Tensor products of function systems revisited
نویسندگان
چکیده
منابع مشابه
Generating-function method for tensor products
Abstract: This is the first of two articles devoted to a exposition of the generatingfunction method for computing fusion rules in affine Lie algebras. The present paper is entirely devoted to the study of the tensor-product (infinite-level) limit of fusions rules. We start by reviewing Sharp’s character method. An alternative approach to the construction of tensor-product generating functions ...
متن کاملThe Smolyak Algorithm and Tensor Products of Function Spaces
The Smolyak algorithm represents one possible approach to the approximation of functions of many variables. The natural domains of de nition are given by tensor products of function spaces de ned on R or on some interval I ⊂ R. Here Besov as well as Sobolev spaces of dominating mixed smoothness come into play. They are tensor products of Besov and Sobolev spaces de ned on R.
متن کاملbivariations and tensor products
the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...
متن کاملThe function ring functors of pointfree topology revisited
This paper establishes two new connections between the familiar function ring functor ${mathfrak R}$ on the category ${bf CRFrm}$ of completely regular frames and the category {bf CR}${mathbf sigma}${bf Frm} of completely regular $sigma$-frames as well as their counterparts for the analogous functor ${mathfrak Z}$ on the category {bf ODFrm} of 0-dimensional frames, given by the integer-valued f...
متن کاملTensor Products
Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2015
ISSN: 1385-1292,1572-9281
DOI: 10.1007/s11117-015-0352-6